Genomic study of cervical cancer completed by international team

3/1/2014

Researchers from 3 countries have completed a genomic analysis of cervical cancer, including at least one genetic mutation for which targeted treatments have been approved for other forms of cancer.

The study was conducted by researchers in the Boston area, Mexico, and Norway. Their findings also shed light on the role human papillomavirus (HPV) plays in the development of cervical cancer.

The study addresses a public health concern of global significance: cervical cancer is the second most common cancer in women and is responsible for approximately 10 percent of cancer deaths in women - particularly in developing countries where screening methods are not readily accessible. Almost all cases of the disease are caused by exposure to HPV and it is expected that vaccination efforts targeting HPV will decrease cervical cancer cases over time. In the meantime, however, the disease remains a significant threat to women's health.

"Cancer is a disease that affects the whole world, and one question that always arises is: is a given cancer type similar or different across populations?" explained Matthew Meyerson, one of the paper's co-senior authors. Meyerson is a professor of pathology and medical oncology at Dana-Farber Cancer Institute and a senior associate member of the Broad Institute. "While we don't have the complete answer yet in this case, what we are seeing is that, in two different populations, the causes of cervical cancer are similar and, fundamentally in both cases, it comes down to HPV-genome interaction."

To investigate the genomic underpinnings of the disease, the team performed whole exome sequencing, which examines the genetic code in the protein-coding regions of the genome, on samples from 115 cervical cancer patients from Norway and Mexico. In some cases, the researchers also conducted whole genome sequencing (analyzing the genetic code across the entire genome) or transcriptome sequencing (focusing on gene expression). In each case, the researchers compared genomic data derived from cervical cancer tumors with genomic data from healthy tissue from the same individual to determine what may have gone wrong - or mutated - in the genome to allow the cancer to develop. The mutations identified in tumors but not in healthy tissues from the same individuals are referred to as somatic mutations.

The study benefited from the international collaboration of scientists from research institutes across the globe and was made possible by SIGMA - the Slim Initiative for Genomic Medicine in the Americas - which promotes the study of genomic medicine in the service of global health.

"Low and middle-income countries suffer the largest burden of cancer in the world," said co-author Jorge Melendez, of the National Institute of Genomic Medicine in Mexico City. "Nevertheless, only 5 percent of all the global resources dedicated to this group of diseases are allocated to them. Initiatives that promote joint efforts with developing countries will help to advance not only the knowledge of the shared and distinct biological aspects of cancer diseases, but also highlight local action items to impact public health."

 

Source: Medical News Today: http://www.medicalnewstoday.com/releases/270668.php

No Comment